Recent Posts
Connect with:
Wednesday / October 17

Three Things You Need to Know About Teaching Math

How did you learn mathematics at school? What was your experience with mathematics? Unfortunately, besides math educators, many people report negative experiences in the classroom due to an overemphasis on rote memorization with little understanding of the underlying concepts of mathematics.

According to Dr H. Lynn Erickson:

“The reason why mathematics is structured differently from history is that mathematics is an inherently conceptual language of concepts, sub-concepts, and their relationships. Number, pattern, measurement, statistics, and so on are the broadest conceptual organizers.” Erickson (2007, p30)

Concept-Based Learning: A Three-Dimensional Educational Design Model

The Facts, Skills and Concepts in Math

Concept-based curriculum and instruction was first introduced by Dr H. Lynn Erickson in her book Concept-based Curriculum and Instruction for the Thinking Classroom (2007) and describes a three-dimensional instructional design mode which includes the third dimension: the conceptual layer; generalizations.

A traditional two-dimensional instructional design model focuses on lower order thinking skills, such as rote memorization of facts and skills, with little understanding. The figure below illustrates the two dimensional instructional design model versus the three dimensional instructional design model.

© 2014 H. Lynn Erickson Source: Transitioning to Concept-Based Curriculum and Instruction, Corwin Press Publishers, Thousand Oaks, CA.

© 2014 H. Lynn Erickson
Source: Transitioning to Concept-Based Curriculum and Instruction, Corwin Press Publishers, Thousand Oaks, CA.

Facts in math include definitions, formulae in terms of symbols, and vocabulary. For example, in right-angled trigonometry students have to know the formulae for Sine, Cosine and Tangent a.k.a SOHCAHTOA. Knowing a fact does not necessarily imply understanding.

Skills are small operations that are embedded in more complex strategies. Skills underpin high order strategies. In right–angled trigonometry students have to able to rearrange the subject of the formula SOHCAHTOA to find missing angles or sides. Performing a skill does not necessarily imply understanding.

Concepts may be defined as organizing ideas or mental constructs, which can consist of one word or a phrase. Concepts have common attributes and are timeless, abstract to varying degrees, and universal. In mathematics all of our topics are actually concepts.

Some examples of concepts in the study of trigonometry are:

  • ratio
  • similar triangles
  • angles

This table shows some examples of other concepts in mathematics.

Concepts in Mathematics


functional relationships


patterns and sequences


quadratic functions

logarithmic & exponential functions

trigonometric functions

trigonometric identities

gradient/ slope

rate of change

process of summation


scatter plots


standard deviation

Generalizations are two or more concepts stated in a sentence of relationship. It is helpful for you to start off with the stem: “I will understand that…” when forming your generalizations.

For right-angled trigonometry a generalization could be:

“Students understand that SOHCAHTOA connect ratios of sides of similar right-angled triangles, which help to solve real-life problems in surveying, architecture, and astronomy.

A learning experience that supports the understanding of this generalization is to ask students to measure a number of similar right-angled triangles and to record the different lengths of the sides and work out the ratios. Download an example of a recording sheet for students.

It is all three elements; facts, skills and concepts that constitute a three-dimensional instructional design model.  I hope these three things will help provide you with a structure to support mathematics teaching and learning.

Written by

Jennifer Chang-Wathall is an independent consultant, author, faculty chair of mathematics at Island School and honorary faculty adviser and part time lecturer for the University of Hong Kong.

With over 20 years experience in the education field, Jennifer has worked in several international schools in various management roles. She is an international keynote speaker and presenter, delivering workshops on Concept-Based Mathematics, 21st Century Learning Skills, and Concept-Based Curriculum.

Jennifer works as an independent consultant helping math departments and schools transition to concept-based curriculum and instruction. She utilizes her skills as a certified Performance Coach to facilitate transition and change.

Her book Concept-Based Mathematics: Teaching for Deep Understanding in Secondary Classrooms was released in February 2016.


Latest comments

  • Yes I would be honored! Thank you!

  • mm

    Hello! This post was recommended for The Best of the Math Teacher Blogs 2016: a collection of people’s favorite blog posts of the year. We would like to publish an edited volume of the posts at the end of the year and use the money raised toward a scholarship for TMC. Please let us know by responding via whether or not you grant us permission to include your post. Thank you, Tina and Lani.

leave a comment